钻机八大系统是什么
钻机八大系统:钻井泥浆循环系统,起升系统,旋转系统,动力设备,传动系统,控制系统,井架底座,辅助设备。
1、钻井循环系统
为了将井底钻头破碎的岩屑及时携带到地面上来以便继续钻进,同时为了冷却钻头保护井壁,防止井塌井漏等钻井事团渣故的发生,旋转钻机配备有循环系统。
循环系统包括钻井泵,地面管汇、泥浆罐、泥浆净化设备等,其中地面管汇包括高压管汇、立管、水龙带,泥浆净化设备包括震动筛、除砂器、除泥器、离心机等。
钻井循环系统
钻井泵将泥浆从泥浆罐中吸入,经钻井泵加压后的泥浆,经过高压管汇、立管、水龙带,进入水龙头,通过空心的钻具下到井底,从钻头的水眼喷出,经井眼和钻具之间的环行空间携带岩屑返回地面,从井底返回的泥浆经各级泥浆净化设备,除去固相含量,然后重复使用。
2、起升系统
为了起升和下放钻具、下套管以及控制钻压、送进钻具,钻具配备有起升系统。
起升系统包括绞车、辅助刹车、天车、游车、大钩、钢丝绳以及羡或碧吊环、吊卡、吊钳、卡瓦等各种工具。
起升时,绞车滚筒缠绕钢丝绳,天车和游车构成副滑轮组,大钩上升通过吊环、吊卡等工具实现钻具的提升。下放时,钻具或套管柱靠自重下降,借助绞车的刹车机构和辅助刹车控制大钩的下放速度。在正常钻进时,通过刹车机构控制钻具的送进速度,将钻具重量的一部分作为钻压施加到钻头上实现破碎岩层。
3、旋转系统
旋转系统是转盘钻机的典型系统,其作用是驱动钻具旋转以破碎岩层,旋转系统包括转盘、水龙头、钻具。
根据所钻井的不同,钻具的组成也有所差异,一般包括方钻杆、钻杆、钻铤和钻头,此外还有扶正器、减震器以及配合接头等。
其中钻头是直接破碎岩石的工具,有刮刀钻头、牙轮钻头、金刚石钻头等类型。钻铤的重量和壁厚都很大,用来向钻头施加钻压,钻杆将地面设备和井底设备联系起来,并传递扭矩。方钻杆的截面一般为正方形,转盘通过方钻杆带动整个钻柱和钻头旋转,水龙头是旋转钻机的典型部件,它既要承受钻具的重量,又要实现旋转运动,同时还提供高压泥浆的通道。
4、动力设备
起升系统、循环系统和旋转系统是钻机的三大工作机组,用来提供动力,它们协调工作即可完成钻井作业,为了向这些工作机组提供动力,钻机需要配备动力设备。
钻机的动力设备有柴油机、交流电机、直流电机。
柴油机兄举适应于在没有电网的偏远地区打井,交流电机依赖于工业电网或者是需要柴油机发出交流电,直流电机需要柴油机带动直流发电机发出直流电,目前更常用的情况是柴油机带动交流发电机发出交流电,再经可控硅整流,将交流电变成直流电。
5、传动系统
传动系统将动力设备提供的力和运动进行变换,然后传递和分配给各工作机组,以满足各工作机组对动力的不同需求。
传动系统一般包括减速机构、变速机构、正倒车机构以及多动力机之间的并车机构等。
由柴油机直接驱动的钻井多采用统一驱动的形式,传动系统相对复杂,由交直流电动机驱动的钻机多采用各机组单独或分组驱动的形式,传动系统得到了很大的简化。
6、控制系统
为了保证钻机的三大工作机组协调的工作,以满足钻井工艺的要求,钻机配备有控制系统。
控制方式有机械控制、电控制和液控制等。
目前,钻机上常用的控制方式是集中气控制。司钻通过钻机上司钻控制台可以完成几乎所有的钻机控制:如总离合器的离合;各动力机的并车;绞车、转盘和钻井泵的起、停;绞车的高低速控制等。
7、井架和底座
井架和底座用来支撑和安装各钻井设备和工具、提供钻井操作场所。井架用来安装天车、悬挂游车、大钩、水龙头和钻具,承受钻井工作载荷,排放立根;底座用来安装动力机组、绞车、转盘、支撑井架,借助转盘悬持钻具,提供转盘和地面之间的高度空间,以安装必要的防喷器和便于泥浆循环。
8、辅助设备
为了保证钻井的安全和正常进行,钻机还包括其他的辅助设备,如防止井喷的防喷器组,为钻井提供照明和辅助用电的发电机组,提供压缩空气的空气压缩设备以及供水、供油设备等。
钻孔机和钻井机的区别
用途不同、外观不同。
1、用途不同。钻李乎枯孔机是指利用比顷敬目标物更坚硬、更锐利的工具通过旋转切削或旋转挤压的方式,在目标物上留下圆柱形孔或洞的机械和设备统称。钻井机是指用于钻井哪洞的设备。包括提升、旋转、钻具和反循环洗井四部分。
2、外观不同。钻孔机是一种小型设备,钻井机是大型设备。
日本人在20世纪60年代是怎样推断出大庆油田的方位的
当时,世界各国一直关心中国有没有大油田,《人民日报》登载了《大庆精神大庆助》的文章,肯定了中国有大油田,日本人一直想知道大庆油田在哪里。
以后《中国画报》又刊登了大庆油田‘王铁人’的照片。日本人从王铁人戴的皮帽子及周围景象推断:大庆地处零下三十度以下的东北地区,大概在哈尔滨和齐齐哈尔之间。
日本人又利用到中国的机会,测量了运送原油火车上灰土的厚度,大体上证实了这个油
田和北京之间的距离。后来,《人民中国》杂志有燃毁祥一篇关于王铁人的文章,提到了马家窑这个地方,并且还提到钻机是人推、肩扛弄到现场的。日本人推断此油田靠车站不远,并进一步推断就在安达车站附近。
日本人对中国东北的地图非常清楚,从地图上,他们找到了马家窑是中国黑龙江海伦县东南的一个小村。
依据马家窑推测出大庆油田地址。进而,日本人又从一篇报道王铁人1959年国庆节在天安门广场观礼的消息中分析出,1959年9月王铁人还在甘肃省玉门油田,以后便消失了,这就证明大庆油田的开发时间自1959年9月开始。“
日本人又对《中国画报》上刊登的一张炼油厂的照片进行研究,那张照片上没有人,也没有尺寸,但有一个扶手栏杆。依照常规,栏杆高一米左右,按比例,日本人推断了油罐的外径,并换算出内径为五米,判定日炼油能力为九万千升,加上残留油,再把原油大体上30%的出油率计算进去,判定原油加工能力为每天3000千升;一年以余罩330天计算,每口井年产原油为一百万千升,大庆油田有八百多口井,那么年产量约为360万皮搏吨。这样,日本人就弄到了大庆油田的情报……
【浅谈石油工程钻井技术的发展】 华东石油工程公司江苏钻井
摘 要:随着深水油气资源不断发现,近几年来深水钻探工作量越来越大。随着水深的增加和复杂的海况环境条件,对钻井工程突出了更高的挑战,钻井技术的难度也越大。本文对深水的钻井设备、关键技术进行了阐述,对深水钻井领域发展具有重要的作用。
关键词:深水钻井;关键技术;发展
中图分类号:TD265.1 文献标识码:A
全世界未发现的海上油气储量有90%潜伏在水深超过1000m以下的地层,所以深水钻井技术水平关系着深海油气勘探开发的步伐。对于海洋深水钻井工程而占,钻井环境条件随水深的增加变得更加复杂,容易出现常规的钻井工程难以克服的技术难题,因此深水钻井技术的发展是影卖陵响未来石油发展的重要因素。
1 深水油气勘探形势
全球海洋油气资源丰富。据估计,海洋石油资源量约占全球石油资源总量的34%,累计获探明储量约400×108t,探明率30%左右,尚处于勘探早期阶段。据美国地质调查局(USGS)评估,世界(不含美国)海洋待发现石油资源量(含凝析油)548×108t,待发现天然核迅气资源量7815×108m3,分别占世界待发现资源量的47%和46%。因此,全球海洋油气资源潜力巨大,勘探前景良好,为今后世界油气勘探开发的重要领域。
随着海洋钻探和开发工程技术的不断进步,深水的概念和范围不断扩大。目前,大于500m为深水,大于1500m则为超深水。据估计,世界海上44%的油气资源位于300m以下的水域,其中,墨西哥湾深水油气资源量高达(400~500)×108桶油当量,约占墨西哥湾大陆架油气资源量的40%以上,而巴西东部海域深水油气比例高达90%左右。
20世纪90年代以来,由于发现油气田储量大,产量高,深水油气倍受跨国石油公司青睐,发展迅速。据估计,近年来,深水油气勘探开发投资年均增长30.4%,2004年增加到220亿美元。1999年作业水深已达2000m,2002年达3000m。90年代以来,全球获近百个深水油气发现,其中亿吨级储量规模的超过30%。2000年,深水油气储量占海洋油气储量的12.3%,比10年前增长约8%。2004年,全球海洋油气勘探获20个重大深水发现(储量大于110×108桶)。1998-2002年有68个深水项目,约15×108t油当量投产;2003-2005年则增至144个深水项目,约4216×108 t油当量投产,2004年深水石油产量210×108 t,约占世界石油产量的5%。
2 目前深水油气开发模式
深水油气开发设施与浅水油气开发设施不同,其结构大多从固定式转换成浮式,因此开发方式和方法也发生了变化。国外深水油气开发中常用的工程设施有张力腿(TLP)平台、半潜式(SEMIOFPS)平台、深吃水立柱式(SPAR)平台、浮式生产储油装置(FPSO)以及它们的组合。
3 深水钻井关键技术
3.1 深水定位系统
半潜中氏戚式钻井平台、钻井船等浮式钻井装置在海中处于飘浮状态,受风、浪、流的影响会发生纵摇、横摇运动,必须采用可靠的方法对其进行定位。
动力定位是深水钻井船的主流方式。在现有的深水钻井船中,只有采用常规锚链定位(额定作业水深不足1000m),1000m以上水深的钻井船采用的都是动力定位,在建的钻井船全部采用动力定位。动力定位系统一般采用DGPS定位和声纳定位2种系统。声纳定位系统的优点:(1)精确度高(1%-2%)、水深(最大适用水深为2500m);(2)信号无线传输(不需要电缆);(3)基本不受天气条件的影响(GPS系统受天气条件的影响);(4)独立,不需要依靠其他系统提供的信号。声纳定位系统的缺点:(1)易受噪声的影响,如环境噪声、推进器噪声、测试MWD等;(2)折射和阴影区;(3)信号传输时间;(4)易受其他声纳系统的干扰,如多条船在同一地方工作的情况。
3.2 大位移井和分支水平井钻井技术
海上钻井新技术发展较快,主要包括大位移井、长距离水平钻井及分支水平井钻井技术。这些先进技术在装备方面主要包括可控马达及与之配套的近钻头定向地层传感器。在钻头向地层钻进时,近钻头传感器可及时检测井斜与地层性质,从而使司钻能够在维持最佳井眼轨迹方面及时做出决定。
由于水平井产量高,所以在国外海上油气田的开发中已经得到了广泛的应用。目前,国外单井总水平位移最大已经达11000m。分支水平井钻井技术是国际上海洋油气田开发广泛使用的技术,近年来发展很快。利用分支井主要是为了适应海上需要,减少开发油藏所需平台数量及平台尺寸(有时平台成本占开发成本一半还多)。具体做法是从一个平台(基础)钻一口主干井,然后从主干井上急剧拐弯钻一些分支井,以期控制较大的泄油面积,或者钻达多个油气层。
3.3 深水双梯度钻井技术
与陆地和浅海钻井相比,深海钻井环境更复杂,容易出现常规钻井装备和方法难以克服的技术难题:锚泊钻机本身必须承受锚泊系统的重量,给钻机稳定性增加了难度;隔水管除了承受自身重量,还承受严重的机械载荷,防止隔水管脱扣是一个关键问题;地层孔隙压力和破裂压力之间安全钻井液密度窗口窄,很难控制钻井液密度安全钻过地层;海底泥线处高压、低温环境影响钻井液性能产生特殊的难题;海底的不稳定性、浅层水流动、天然气水合物可能引起的钻井风险等。国外20世纪60年代提出并在90年代得到大力发展的双梯度钻井(DualGradi-entDrilling,简称DGD)技术很好地解决了这些问题。双梯度钻井技术的主要思想是:隔水管内充满海水(或不使用隔水管),采用海底泵和小直径回流管线旁路回输钻井液;或在隔水管中注入低密度介质(空心微球、低密度流体、气体),降低隔水管环空内返回流体的密度,使之与海水相当,在整个钻井液返回回路中保持双密度钻井液体系,有效控制井眼环空压力、井底压力,克服深水钻井中遇到的问题,实现安全、经济的钻井。
3.4 喷射下导管技术
海上浅水区的表层套管作业通常采用钻孔、下套管然后固井的作业方式。在深水区,由于海底浅部地层比较松软,常规的钻孔/下套管/固井方式常常比较困难,作业时间较长,对于日费高昂的深水钻井作业显然不合适。目前国外深水导管钻井作业通常采用“Jetting in”的方式。常规做法是在导管柱(?覫914.4mm或0762mm)内下入钻具,利用导管柱和钻具(钻铤)的重量,边开泵冲洗边下人导管。
评论留言